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Hopf-Galois Theory

If L/K is Galois with Γ = Gal(L/K) then the elements

of Γ are an L-basis for EndK(L) whence a natural map:

H = K[Γ]
µ→ EndK(L)

which induces

I ⊗ µ : L#H
∼=→ EndK(L)

For the group ring K[Γ] the Hopf algebra structure is

reflected in how K[Γ] acts (via endomorphisms) on L/K

and in Hopf Galois theory, the idea is to consider actions

by general Hopf algebras acting by endomorphisms on

L/K.
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Hopf-Galois theory is a generalization of ordinary Galois

theory in several ways.

• One can put Hopf Galois structure(s) on field exten-

sions L/K which aren’t Galois in the usual way be-

cause they are separable but non-normal e.g. Q( 3
√
2)/Q

• Moreover, one can take an extension L/K which is

Galois with group Γ (hence Hopf-Galois for H =

K[Γ]) and also find other Hopf algebras which act

besides K[Γ].

Both cases are covered by the Greither-Pareigis enu-

meration and the formulation for the latter is as fol-

lows:
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• L/K finite Galois extension with Γ = Gal(L/K).

Γ acting on itself by left translation yields an embedding

λ : Γ →֒ B = Perm(Γ)

Definition: N ≤ B is regular if N acts transitively and

fixed point freely on Γ.

Theorem 1: [Greither-Pariegis - 1987]

The following are equivalent:

• There is a K-Hopf algebra H such that L/K is H-

Galois

• There is a regular subgroup N ≤ B s.t. λ(Γ) ≤
NormB(N) where N yields H = (L[N ])Γ.
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Definitions/Notation:

B = Perm(Γ) ∼= S|Γ|

R(Γ) = {N ≤ B | N regular, λ(Γ) ≤ NormB(N)}

R(Γ, [M ]) = {N ∈ R(Γ)| N ∼= M}

The goal then is to enumerate R(Γ) for a given Γ and

this entails the enumeration of R(Γ, [M ]) for each iso-

morphism class M of groups of order |Γ|.
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The problem in general is that one is searching for

N ≤ B

where B is very large!

We shall show in the case we study, that all N in ques-

tion are subgroups of a much smaller group.
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Groups of Order mp

Consider those primes ’p’ and integers ’m’ such that

• gcd(p,m) = 1

• any group Γ of order mp has a unique (therefore

characterstic) Sylow p-subgroup

• for any group Q of order m, one has p ∤ |Aut(Q)|

6



One obvious class of (p,m) for which the above holds

are where p > m, but others may be found.

For example, if (p,m) = (5,8) then Sylow theory easily

shows that any group of order 40 will have a unique

Sylow 5-subgroup.

Moreover for each group of order 8,

{C8, C4 × C2, C2 × C2 × C2, D4, Q2}

the respective automorphism groups have orders {4,8,168,8,24},
none of which are divisible by 5.
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For any such group Γ of order mp we have the following.

By Schur-Zassenhaus

Γ = PQ ∼= P ×Q or P ⋊τ Q

for P the unique Sylow p-subgroup and Q a subgroup

of order m.

And since p ∤ |Aut(Q)| then either p ∤ |Aut(Γ)| or the

Sylow p-subgroup of Aut(Γ) is generated by inner au-

tomorphisms arising from P .

As such the Sylow p-subgroup of Hol(Γ) = Γ ⋊ Aut(Γ)

is isomorphic to either Cp or Cp × Cp.
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For λ(Γ) ≤ B we have λ(Γ) = PQ where (by virtue of

regularity) P = 〈π1π2 · · ·πm〉 with

• π1, . . . , πm disjoint p cycles

• Q is a regular permutation group on {Π1, . . . ,Πm}
where Πi = Support(πi).

• In fact, the Πi are blocks with respect to the action

of Q.
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What we wish to prove is that for these p and m that

if N ∈ R(Γ) then N ≤ NormB(P).

This ultimately is due to the relationship between P
and the Sylow p-subgroup of such a given N .
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As N in R(Γ) is also of order mp then N = P(N)Q(N)

where P(N) = 〈θ〉 has order p where θ = θ1 · · · θm, also

a product of m disjoint p-cycles.

Proposition 2: If N ∈ R(Γ) with Sylow p-subgroup

P(N) then P(N) is a semi-regular subgroup of V =

〈π1, . . . , πm〉.

Why?

Since P(N) = 〈θ〉 is characteristic, it is normalized by

λ(Γ) and thus centralized by P, and conversely that

P(N) centralizes P.

If p > m then θπiθ
−1 = πi implies (after re-ordering if

necessary) that θi ∈ 〈πi〉, so that P(N) ≤ V.
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Recall that since P is semi-regular, its centralizer in B

is isomorphic to Cp ≀ Sm, more specifically V ⋊ S where

S is the set of permutations of the ’blocks’ consisting

of the supports of the πi.



As it turns out, this is not automatically true that

P(N) ≤ V if it’s merely assumed that gcd(p,m) = 1.

For example, if p=5 and m=8 then in S40 let

πi = (1+(i−1)5,2+(i−1)5,3+(i−1)5,4+(i−1)5,5+(i−1)5)

for i = 1, . . . ,8 and let θj = (j, j+5, j+10, j+15, j+20)

for j = 1, . . . ,5 and θ6 = π6, θ7 = π7, θ8 = π8.

One may verify that π = π1 · · · π8 is centralized by θ =

θ1 · · · θ8 but for j = 1, . . . ,5 that θj is not a power of

any πi.

This example shows that the P(N) ≤ N being nor-

malized, and thus centralized, by P is insufficient to

guarantee that P(N) ≤ 〈π1, π2, . . . , πm〉.
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However since Γ normalizes N , then in fact we do have

P(N) ≤ V. (even if p < m)

The reason is that with λ(Γ) = PQ that Q must also

normalizes P(N) and this is what forces P(N) ≤ V.
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As λ(Γ) = PQ normalizes P then for any N ∈ R(Γ) we

have P(N) normalizes P so we need to look closely at

the structure of NormB(P).
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Proposition 3:

NormB(P) ∼= Cm
p ⋊ (Up × Sm)

• typical element (â, u, α) where â = [a1, . . . , am] ∈ Fmp

• [a1, . . . , am] corresponds to π
a1
1 · · ·πam

m ∈ V

• u ∈ Up = F∗p acts by scalar multiplication

• α in Sm permutes the coordinates

• (̂b, v, β)(â, u, α) = (̂b+ vβ(â), vu, βα)

• CentB(P) consists of those (â, u, α) where u = 1
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Since P(N) ≤ V = 〈π1, . . . , πm〉 then its generator is of

the form π
a1
1 · · ·πam

m for some set {ai} where all ai 6= 0.

Theorem 4: Any semi-regular subgroup of B of order

p that is normalized by Q, hence λ(Γ), is generated by

p̂χ =
∑

γ∈Q
χ(γ)v̂γ(1)

• χ : Q → Up = F∗p is a linear character of Q

• v̂i = [0, . . . ,1, . . . ,0] ↔ πi.

• Q acts regularly on {1, . . . ,m}.
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For example, if m = 4 and Q ∼= C2 × C2 = 〈x, y〉, we

have

1 x y xy
χ1 1 1 1 1

χ2 1 1 -1 -1

χ3 1 -1 1 -1

χ4 1 -1 -1 1

whence subgroups

P = P1 = 〈[1,1,1,1]〉 = 〈π1π2π3π4〉
P2 = 〈[1,1,−1,−1]〉 = 〈π1π2π−1

3 π−1
4 〉

P3 = 〈[1,−1,1,−1]〉 = 〈π1π−1
2 π3π

−1
4 〉

P4 = 〈[1,−1,−1,1]〉 = 〈π1π−1
2 π−1

3 π4〉
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Now, to further organize the arrangement of N in a

given R(Γ, [M ]) we consider the role of Nopp = CentB(N).

For example, λ(Γ)opp = ρ(Γ) where ρ : Γ → Perm(Γ) is

the right regular representation.
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We have the following:

• N regular if and only if Nopp regular

• N regular → (Nopp)opp = N

• NormB(N) = NormB(Nopp)

• N ∈ R(Γ, [M ]) if and only if Nopp ∈ R(Γ, [M ])
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Theorem 5: If P = P1, P2, . . . , Pk are the possible P(N)

then

(a) if N is a direct product (with P(N) as a factor)

then

N ∈ R(Γ, [M ]) implies P(N) = P = P(Nopp)

(b) if N is a semi-direct product then P(N) 6= P(Nopp)

and

∣

∣

∣{N ∈ R(Γ, [M ]) | P(N) = P1}
∣

∣

∣ =
k
∑

i=2

∣

∣

∣{N ∈ R(Γ, [M ])|P(N) = Pi}
∣

∣

∣

N.B. For a given isomorphism class [M ] it’s possible

that {N ∈ R(Γ, [M ])|P(N) = Pi} may be empty for some

i > 1, or that R(Γ, [M ]) might be empty altogether.
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Orthogonality of characters, namely those giving rise to

P(N) for N ∈ R(Γ), together with the assumption that

p ∤ |Aut(Q)| ultimately yields the main theorem which

allows us to ’contain’ all of R(Γ) in a much smaller

subgroup of B.

Theorem 6: If N ∈ R(Γ) then N ≤ NormB(P).
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To simplify the computations, one may observe that

any two regular subgroups of Sn that are isomorphic as

abstract groups are in fact conjugate to each other.

The result of this is that instead of working in B =

Perm(Γ) and dealing with left regular representations,

it is simpler to instead pick Γ to be a regular subgroup

of B = Smp and compute N with respect to this choice

of Γ.
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• Define P = 〈π1 · · ·πm〉 where πi = (1+p(i−1), . . . , pi)

• For each (isomorphism class of) regular permuta-

tion group Q of order m, embed Q in NormB(P)

• For each character χ of Q compute p̂χ and corre-

spondingly Γ = (〈p̂χ〉Q)opp which will be regular and

contain P.

• Let Γ1, . . . ,Γd be the distinct isomorphism classes

resulting from this construction.

• Determine N ∈ R(Γi, [Γj]) for each i, j where now all

Γi are regular subgroups of B containing the same

P
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Examples: Groups of Order 4p

• C4p

• Cp × V

• Ep = Cp ⋊ C4 if p ≡ 1(mod 4)

•D2p

•Qp
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Theorem 7: Let R(Γ, [M ]) be the set of regular sub-

groups N isomorphic to M in Perm(Γi) that are nor-

malized by λ(Γ). Then the cardinality of R(Γ, [M ]) is

given by the following table:

Γ \M C4p Cp × V Ep D2p Qp

C4p 1 1 4 2 2

Cp × V 3 1 0 6 6

Ep p p 2p+2 2p 2p
D2p 3p p 0 4p+2 4p+2

Qp p p 4p 2 2
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Byott determined |R(Γi, [Γj])| for groups of order pq for

p and q prime, where p ≡ 1(mod q), which can also be

done via our method, the results being

Γ \M Cpq Cp ⋊ Cq

Cpq 1 2(q − 2)

Cp ⋊ Cq p 2(p(q − 2) + 1)
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For p = 2q + 1 (where q is prime, making p a ’safe

prime’) and m = p− 1 = 2q

• Cmp

• Cp ×Dq

• (Cp ⋊ Cq)× C2 = F × C2

•Dp × Cq

•Dpq

• Cp ⋊ C2q
∼= Hol(Cp)
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Theorem 8: Let R(Γ, [M ]) be the set of regular sub-

groups N isomorphic to M in Perm(Γi) that are nor-

malized by λ(Γ). Then the cardinality of R(Γ, [M ]) is

given by the following table:

Γ \M Cmp Cp ×Dq F × C2 Cq ×Dp Dpq Hol(Cp)

Cmp 1 2 2(q − 1) 2 4 2(q − 1)

Cp ×Dq q 2 0 2q 4 0

F × C2 p 2p 2(p(q − 2) + 1) 2p 4p 2p(q − 1)

Cq ×Dp p 2p 2p(q − 1) 2 4 2p(q − 1)

Dpq qp 2p 0 2q 4 0

Hol(Cp) p 2p 2p(q − 1) 2p 4p 2(p(q − 2) + 1) (*)

(*) This case was enumerated by Childs using different

techniques.
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Groups of Square-Free Order

If we branch out from the p > m case, we can consider

groups of order p1p2 · · · pn for primes p1 < . . . pn.

There is a classic formula due to Hölder (and utilized

by Alonso) for the enumeration of groups of square-free

order.

All such groups are iterated (semi)-direct products of

cyclic groups, the number of which are dependent on

whether pl ≡ 1 (mod pk) for l > k, where the maximum

number of groups occurs if each pl is congruent to 1

mod each pk for l > k.
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Consider groups of order p1p2p3 for p1 < p2 < p3.

If |Γ| = p1p2p3 then the Sylow p3-subgroup of Γ is

unique, and if p = p3 and m = p1p2 then groups of

order m have automorphism groups of order relatively

prime to p3.

If p3 ≡ 1(mod p2) and p2 ≡ 1(mod p1) and p2 ≡ 1(mod p1)

then p3 > p1p2 (i.e. p > m) similar to the cases for the

safe primes seen earlier.

However, if p3 ≡ 1 (mod p1) and p2 ≡ 1 (mod p1) and

p3 6≡ 1(mod p2) then p = p3 < m = p1p2.
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Proposition 9:[Alonso] If p1, p2 and p3 are distinct

odd primes where p1 < p2 < p3 with p3 ≡ 1 (mod p1),

p2 ≡ 1 (mod p1), but p3 6≡ 1 (mod p2) then there are

p1 +2 groups of order p1p2p3:

Cp3p2p1 = 〈x, y, z|xp3, yp2, zp1, [y, x], [z, x], [z, y]〉
Cp2 × (Cp3 ⋊ Cp1) = 〈x, y, z|xp3, yp2, zp1, [y, x], [z, y], zxz−1x−v3〉
Cp3 × (Cp2 ⋊ Cp1) = 〈x, y, z|xp3, yp2, zp1, [y, x], [z, x], zyz−1y−v2〉

Cp3p2 ⋊i Cp1 = 〈x, y, z|xp3, yp2, zp1, [y, x], zxz−1x−v3, zyz−1y−vi2〉
i = 1, . . . , p1 − 1

where v3 is the order p1 element in Up3 and v2 is the

order p1 element of Up2.
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Theorem 10: If we define

f(a, b) = 2(a(b − 2) + 1)

g(a, b) = 2a(b − 1)

then

Γ \M Cp3p2p1 Cp3 × (Cp2 ⋊ Cp1) Cp2 × (Cp3 ⋊ Cp1) Cp3p2 ⋊i Cp1
Cp3p2p1 1 g(1, p1) g(1, p1) 2g(1, p1)

Cp3 × (Cp2 ⋊ Cp1) p2 f(p2, p1) g(p2, p1) 2f(p2, p1)
Cp2 × (Cp3 ⋊ Cp1) p3 g(p3, p1) f(p3, p1) 2f(p3, p1)

Cp3p2 ⋊j Cp1 p3p2 p3f(p2, p1) p2f(p3, p1) -

i, j |R(Cp3p2 ⋊j Cp1, [Cp3p2 ⋊i Cp1])|
j = i,−i 2(p3 + p2 + (2p1 − 5)p2p3 +1)

j 6= i,−i 2(2p3 +2p2 + (2p1 − 6)p2p3)
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Square Free Groups of Order p1p2 · · · pn in General

Theorem 11: [Birkhoff & Hall] If |G| = p
n1
1 p

n2
2 · · · pnr

r

then

(a) |Aut(G)| divides θ(p
n1
1 ) · · · θ(pnr

r )|G|r−1.

(b) if G is solvable, |Aut(G)| divides θ(p
n1
1 ) · · · θ(pnr

r )|G|.

(c) if G is nilpotent, |Aut(G)| divides θ(p
n1
1 ) · · · θ(pnr

r ).

where θ(pn) = (pn − 1)((pn − p) · · · (pn − pn−1).
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So if |Γ| = p1p2 · · · pr where p1 < · · · < pr then the

Sylow pr-subgroup is unique and p = pr ∤ |Aut(Q)| where

|Q| = p1 · · · pr−1 = m.

Thus this program may be applied to all groups of

square-free order.
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Thank you!
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