Hopf-Galois Structures on Degree mp Extensions

Timothy Kohl

May 2016

Hopf-Galois Theory

If L/K is Galois with $\Gamma = Gal(L/K)$ then the elements of Γ are an *L*-basis for $End_K(L)$ whence a natural map:

$$H = K[\Gamma] \xrightarrow{\mu} End_K(L)$$

which induces

$$I \otimes \mu : L \# H \stackrel{\cong}{\Rightarrow} End_K(L)$$

For the group ring $K[\Gamma]$ the Hopf algebra structure is reflected in how $K[\Gamma]$ acts (via endomorphisms) on L/Kand in Hopf Galois theory, the idea is to consider actions by general Hopf algebras acting by endomorphisms on L/K. Hopf-Galois theory is a generalization of ordinary Galois theory in several ways.

- One can put Hopf Galois structure(s) on field extensions L/K which aren't Galois in the usual way because they are separable but non-normal e.g. $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$
- Moreover, one can take an extension L/K which is Galois with group Γ (hence Hopf-Galois for $H = K[\Gamma]$) and also find *other* Hopf algebras which act besides $K[\Gamma]$.

Both cases are covered by the Greither-Pareigis enumeration and the formulation for the latter is as follows: • L/K finite Galois extension with $\Gamma = Gal(L/K)$.

 Γ acting on itself by left translation yields an embedding

$$\lambda: \Gamma \hookrightarrow B = Perm(\Gamma)$$

Definition: $N \leq B$ is *regular* if N acts transitively and fixed point freely on Γ .

Theorem 1: [Greither-Pariegis - 1987]

The following are equivalent:

- There is a K-Hopf algebra H such that L/K is H-Galois
- There is a regular subgroup $N \leq B$ s.t. $\lambda(\Gamma) \leq Norm_B(N)$ where N yields $H = (L[N])^{\Gamma}$.

Definitions/Notation:

 $B = Perm(\Gamma) \cong S_{|\Gamma|}$

 $R(\Gamma) = \{ N \leq B \mid N \text{ regular}, \ \lambda(\Gamma) \leq Norm_B(N) \}$

$$R(\Gamma, [M]) = \{ N \in R(\Gamma) | N \cong M \}$$

The goal then is to enumerate $R(\Gamma)$ for a given Γ and this entails the enumeration of $R(\Gamma, [M])$ for each isomorphism class M of groups of order $|\Gamma|$. The problem in general is that one is searching for

 $N \leq B$

where B is very large!

We shall show in the case we study, that all N in question are subgroups of a much smaller group.

Groups of Order mp

Consider those primes 'p' and integers 'm' such that

- gcd(p,m) = 1
- any group Γ of order mp has a unique (therefore characterstic) Sylow p-subgroup
- for any group Q of order m, one has $p \nmid |Aut(Q)|$

One obvious class of (p, m) for which the above holds are where p > m, but others may be found.

For example, if (p, m) = (5, 8) then Sylow theory easily shows that any group of order 40 will have a unique Sylow 5-subgroup.

Moreover for each group of order 8,

$$\{C_8, C_4 \times C_2, C_2 \times C_2 \times C_2, D_4, Q_2\}$$

the respective automorphism groups have orders $\{4, 8, 168, 8, 24\}$, *none* of which are divisible by 5.

For any such group Γ of order mp we have the following.

By Schur-Zassenhaus

$$\Gamma = PQ \cong P \times Q \text{ or } P \rtimes_{\tau} Q$$

for P the unique Sylow p-subgroup and Q a subgroup of order m.

And since $p \nmid |Aut(Q)|$ then either $p \nmid |Aut(\Gamma)|$ or the Sylow *p*-subgroup of $Aut(\Gamma)$ is generated by inner automorphisms arising from *P*.

As such the Sylow *p*-subgroup of $Hol(\Gamma) = \Gamma \rtimes Aut(\Gamma)$ is isomorphic to either C_p or $C_p \times C_p$. For $\lambda(\Gamma) \leq B$ we have $\lambda(\Gamma) = \mathcal{PQ}$ where (by virtue of regularity) $\mathcal{P} = \langle \pi_1 \pi_2 \cdots \pi_m \rangle$ with

- π_1, \ldots, π_m disjoint p cycles
- Q is a regular permutation group on $\{\Pi_1, \ldots, \Pi_m\}$ where $\Pi_i = Support(\pi_i)$.
- In fact, the Π_i are blocks with respect to the action of Q.

What we wish to prove is that for these p and m that if $N \in R(\Gamma)$ then $N \leq Norm_B(\mathcal{P})$.

This ultimately is due to the relationship between \mathcal{P} and the Sylow *p*-subgroup of such a given *N*.

As N in $R(\Gamma)$ is also of order mp then N = P(N)Q(N)where $P(N) = \langle \theta \rangle$ has order p where $\theta = \theta_1 \cdots \theta_m$, also a product of m disjoint p-cycles.

Proposition 2: If $N \in R(\Gamma)$ with Sylow *p*-subgroup P(N) then P(N) is a semi-regular subgroup of $\mathcal{V} = \langle \pi_1, \ldots, \pi_m \rangle$.

Why?

Since $P(N) = \langle \theta \rangle$ is characteristic, it is normalized by $\lambda(\Gamma)$ and thus centralized by \mathcal{P} , and conversely that P(N) centralizes \mathcal{P} .

If p > m then $\theta \pi_i \theta^{-1} = \pi_i$ implies (after re-ordering if necessary) that $\theta_i \in \langle \pi_i \rangle$, so that $P(N) \leq \mathcal{V}$.

Recall that since \mathcal{P} is semi-regular, its centralizer in B is isomorphic to $C_p \wr S_m$, more specifically $\mathcal{V} \rtimes \mathcal{S}$ where \mathcal{S} is the set of permutations of the 'blocks' consisting of the supports of the π_i .

As it turns out, this is *not* automatically true that $P(N) \leq \mathcal{V}$ if it's merely assumed that gcd(p,m) = 1.

For example, if p=5 and m=8 then in S_{40} let

 $\pi_i = (1+(i-1)5, 2+(i-1)5, 3+(i-1)5, 4+(i-1)5, 5+(i-1)5)$ for i = 1, ..., 8 and let $\theta_j = (j, j+5, j+10, j+15, j+20)$ for j = 1, ..., 5 and $\theta_6 = \pi_6, \ \theta_7 = \pi_7, \ \theta_8 = \pi_8.$

One may verify that $\pi = \pi_1 \cdots \pi_8$ is centralized by $\theta = \theta_1 \cdots \theta_8$ but for $j = 1, \dots, 5$ that θ_j is not a power of any π_i .

This example shows that the $P(N) \leq N$ being normalized, and thus centralized, by \mathcal{P} is insufficient to guarantee that $P(N) \leq \langle \pi_1, \pi_2, \dots, \pi_m \rangle$. However since Γ normalizes N, then in fact we do have $P(N) \leq \mathcal{V}$. (even if p < m)

The reason is that with $\lambda(\Gamma) = \mathcal{PQ}$ that \mathcal{Q} must also normalizes P(N) and *this* is what forces $P(N) \leq \mathcal{V}$.

As $\lambda(\Gamma) = \mathcal{PQ}$ normalizes \mathcal{P} then for any $N \in R(\Gamma)$ we have P(N) normalizes \mathcal{P} so we need to look closely at the structure of $Norm_B(\mathcal{P})$.

Proposition 3:

 $Norm_B(\mathcal{P}) \cong C_p^m \rtimes (U_p \times S_m)$

- typical element (\hat{a}, u, α) where $\hat{a} = [a_1, \dots, a_m] \in \mathbb{F}_p^m$
- $[a_1, \ldots, a_m]$ corresponds to $\pi_1^{a_1} \cdots \pi_m^{a_m} \in \mathcal{V}$
- $u \in U_p = \mathbb{F}_p^*$ acts by scalar multiplication
- α in S_m permutes the coordinates
- $(\hat{b}, v, \beta)(\hat{a}, u, \alpha) = (\hat{b} + v\beta(\hat{a}), vu, \beta\alpha)$
- $Cent_B(\mathcal{P})$ consists of those (\hat{a}, u, α) where u = 1

Since $P(N) \leq \mathcal{V} = \langle \pi_1, \dots, \pi_m \rangle$ then its generator is of the form $\pi_1^{a_1} \cdots \pi_m^{a_m}$ for some set $\{a_i\}$ where all $a_i \neq 0$.

Theorem 4: Any semi-regular subgroup of *B* of order *p* that is normalized by Q, hence $\lambda(\Gamma)$, is generated by

$$\widehat{p}_{\chi} = \sum_{\gamma \in \mathcal{Q}} \chi(\gamma) \widehat{v}_{\gamma(1)}$$

• $\chi : \mathcal{Q} \to U_p = \mathbb{F}_p^*$ is a linear character of \mathcal{Q}

•
$$\hat{v}_i = [0, \ldots, 1, \ldots, 0] \leftrightarrow \pi_i.$$

• Q acts regularly on $\{1, \ldots, m\}$.

For example, if m = 4 and $\mathcal{Q} \cong C_2 \times C_2 = \langle x, y \rangle$, we have

	1	x	y	xy
χ_1	1	1	1	1
χ2	1	1	-1	-1
<i>х</i> з	1	-1	1	-1
χ4	1	-1	-1	1

whence subgroups

$$\mathcal{P} = P_1 = \langle [1, 1, 1, 1] \rangle = \langle \pi_1 \pi_2 \pi_3 \pi_4 \rangle$$

$$P_2 = \langle [1, 1, -1, -1] \rangle = \langle \pi_1 \pi_2 \pi_3^{-1} \pi_4^{-1} \rangle$$

$$P_3 = \langle [1, -1, 1, -1] \rangle = \langle \pi_1 \pi_2^{-1} \pi_3 \pi_4^{-1} \rangle$$

$$P_4 = \langle [1, -1, -1, 1] \rangle = \langle \pi_1 \pi_2^{-1} \pi_3^{-1} \pi_4 \rangle$$

Now, to further organize the arrangement of N in a given $R(\Gamma, [M])$ we consider the role of $N^{opp} = Cent_B(N)$.

For example, $\lambda(\Gamma)^{opp} = \rho(\Gamma)$ where $\rho : \Gamma \to Perm(\Gamma)$ is the right regular representation.

We have the following:

- N regular if and only if N^{opp} regular
- $N \text{ regular} \to (N^{opp})^{opp} = N$
- $Norm_B(N) = Norm_B(N^{opp})$
- $N \in R(\Gamma, [M])$ if and only if $N^{opp} \in R(\Gamma, [M])$

Theorem 5: If $\mathcal{P} = P_1, P_2, \dots, P_k$ are the possible P(N) then

(a) if N is a direct product (with P(N) as a factor) then

 $N \in R(\Gamma, [M])$ implies $P(N) = \mathcal{P} = P(N^{opp})$ (b) if N is a semi-direct product then $P(N) \neq P(N^{opp})$ and

$$|\{N \in R(\Gamma, [M]) | P(N) = P_1\}| = \sum_{i=2}^k |\{N \in R(\Gamma, [M]) | P(N) = P_i\}|$$

N.B. For a given isomorphism class [M] it's possible that $\{N \in R(\Gamma, [M]) | P(N) = P_i\}$ may be empty for some i > 1, or that $R(\Gamma, [M])$ might be empty altogether.

Orthogonality of characters, namely those giving rise to P(N) for $N \in R(\Gamma)$, together with the assumption that $p \nmid |Aut(Q)|$ ultimately yields the main theorem which allows us to 'contain' all of $R(\Gamma)$ in a much smaller subgroup of B.

Theorem 6: If $N \in R(\Gamma)$ then $N \leq Norm_B(\mathcal{P})$.

To simplify the computations, one may observe that any two regular subgroups of S_n that are isomorphic as abstract groups are in fact conjugate to each other.

The result of this is that instead of working in $B = Perm(\Gamma)$ and dealing with left regular representations, it is simpler to instead pick Γ to be a regular subgroup of $B = S_{mp}$ and compute N with respect to this choice of Γ .

- Define $\mathcal{P} = \langle \pi_1 \cdots \pi_m \rangle$ where $\pi_i = (1+p(i-1), \dots, pi)$
- For each (isomorphism class of) regular permutation group Q of order m, embed Q in $Norm_B(\mathcal{P})$
- For each character χ of \mathcal{Q} compute \hat{p}_{χ} and correspondingly $\Gamma = (\langle \hat{p}_{\chi} \rangle \mathcal{Q})^{opp}$ which will be regular and contain \mathcal{P} .
- Let $\Gamma_1, \ldots, \Gamma_d$ be the distinct isomorphism classes resulting from this construction.
- Determine $N \in R(\Gamma_i, [\Gamma_j])$ for each i, j where now all Γ_i are regular subgroups of B containing the same \mathcal{P}

Examples: Groups of Order 4p

C_{4p}
C_p × V
E_p = C_p ⋊ C₄ if p ≡ 1(mod 4)
D_{2p}
Q_p

Theorem 7: Let $R(\Gamma, [M])$ be the set of regular subgroups N isomorphic to M in $Perm(\Gamma_i)$ that are normalized by $\lambda(\Gamma)$. Then the cardinality of $R(\Gamma, [M])$ is given by the following table:

$\ \ \Box \setminus M$	C_{4p}	$C_p \times V$	E_p	D_{2p}	Q_p
C_{4p}	1	1	4	2	2
$C_p \times V$	3	1	0	6	6
E_p	p	p	2p + 2	2 <i>p</i>	2 <i>p</i>
D_{2p}	3 p	p	0	4p + 2	4p + 2
Q_p	p	p	4 <i>p</i>	2	2

Byott determined $|R(\Gamma_i, [\Gamma_j])|$ for groups of order pq for p and q prime, where $p \equiv 1 \pmod{q}$, which can also be done via our method, the results being

$\Box \setminus M$	C_{pq}	$C_p \rtimes C_q$
C_{pq}	1	2(q-2)
$C_p \rtimes C_q$	p	2(p(q-2)+1)

For p = 2q + 1 (where q is prime, making p a 'safe prime') and m = p - 1 = 2q

• C_{mp}

- $C_p \times D_q$
- $(C_p \rtimes C_q) \times C_2 = F \times C_2$
- $D_p \times C_q$
- D_{pq}
- $C_p \rtimes C_{2q} \cong Hol(C_p)$

Theorem 8: Let $R(\Gamma, [M])$ be the set of regular subgroups N isomorphic to M in $Perm(\Gamma_i)$ that are normalized by $\lambda(\Gamma)$. Then the cardinality of $R(\Gamma, [M])$ is given by the following table:

$\Gamma \setminus M$	C_{mp}	$C_p \times D_q$	$F \times C_2$	$C_q \times D_p$	D_{pq}	$Hol(C_p)$
C_{mp}	1	2	2(q-1)	2	4	2(q-1)
$C_p \times D_q$	q	2	0	2q	4	0
$F \times C_2$	p	2 <i>p</i>	2(p(q-2)+1)	2 <i>p</i>	4 <i>p</i>	2p(q - 1)
$C_q \times D_p$	p	2 <i>p</i>	2p(q - 1)	2	4	2p(q - 1)
D_{pq}	qp	2 <i>p</i>	0	2q	4	0
$Hol(C_p)$	p	2p	2p(q-1)	2p	4 <i>p</i>	2(p(q-2)+1) (*)

(*) This case was enumerated by Childs using different techniques.

Groups of Square-Free Order

If we branch out from the p > m case, we can consider groups of order $p_1p_2 \cdots p_n$ for primes $p_1 < \ldots p_n$.

There is a classic formula due to Hölder (and utilized by Alonso) for the enumeration of groups of square-free order.

All such groups are iterated (semi)-direct products of cyclic groups, the number of which are dependent on whether $p_l \equiv 1 \pmod{p_k}$ for l > k, where the maximum number of groups occurs if each p_l is congruent to 1 mod each p_k for l > k.

Consider groups of order $p_1p_2p_3$ for $p_1 < p_2 < p_3$.

If $|\Gamma| = p_1 p_2 p_3$ then the Sylow p_3 -subgroup of Γ is unique, and if $p = p_3$ and $m = p_1 p_2$ then groups of order m have automorphism groups of order relatively prime to p_3 .

If $p_3 \equiv 1 \pmod{p_2}$ and $p_2 \equiv 1 \pmod{p_1}$ and $p_2 \equiv 1 \pmod{p_1}$ then $p_3 > p_1 p_2$ (i.e. p > m) similar to the cases for the safe primes seen earlier.

However, if $p_3 \equiv 1 \pmod{p_1}$ and $p_2 \equiv 1 \pmod{p_1}$ and $p_3 \not\equiv 1 \pmod{p_2}$ then $p = p_3 < m = p_1 p_2$.

Proposition 9:[Alonso] If p_1 , p_2 and p_3 are distinct odd primes where $p_1 < p_2 < p_3$ with $p_3 \equiv 1 \pmod{p_1}$, $p_2 \equiv 1 \pmod{p_1}$, but $p_3 \not\equiv 1 \pmod{p_2}$ then there are $p_1 + 2$ groups of order $p_1p_2p_3$:

 $C_{p_{3}p_{2}p_{1}} = \langle x, y, z | x^{p_{3}}, y^{p_{2}}, z^{p_{1}}, [y, x], [z, x], [z, y] \rangle$ $C_{p_{2}} \times (C_{p_{3}} \rtimes C_{p_{1}}) = \langle x, y, z | x^{p_{3}}, y^{p_{2}}, z^{p_{1}}, [y, x], [z, y], zxz^{-1}x^{-v_{3}} \rangle$ $C_{p_{3}} \times (C_{p_{2}} \rtimes C_{p_{1}}) = \langle x, y, z | x^{p_{3}}, y^{p_{2}}, z^{p_{1}}, [y, x], [z, x], zyz^{-1}y^{-v_{2}} \rangle$ $C_{p_{3}p_{2}} \rtimes_{i} C_{p_{1}} = \langle x, y, z | x^{p_{3}}, y^{p_{2}}, z^{p_{1}}, [y, x], zxz^{-1}x^{-v_{3}}, zyz^{-1}y^{-v_{2}^{i}} \rangle$ $i = 1, \dots, p_{1} - 1$

where v_3 is the order p_1 element in U_{p_3} and v_2 is the order p_1 element of U_{p_2} .

Theorem 10: If we define

$$f(a,b) = 2(a(b-2) + 1)$$

$$g(a,b) = 2a(b-1)$$

then

$\Gamma\setminus M$	$C_{p_{3}p_{2}p_{1}}$	$C_{p_3} \times (C_{p_2} \rtimes C_{p_1})$	$C_{p_2} \times (C_{p_3} \rtimes C_{p_1})$	$C_{p_3p_2} \rtimes_i C_{p_1}$
$C_{p_3p_2p_1}$	1	$g(1, p_1)$	$g(1, p_1)$	$2g(1, p_1)$
$C_{p_3} \times (C_{p_2} \rtimes C_{p_1})$	p_2	$f(p_2, p_1)$	$g(p_2, p_1)$	$2f(p_2, p_1)$
$C_{p_2} \times (C_{p_3} \rtimes C_{p_1})$	p_3	$g(p_{3}, p_{1})$	$f(p_{3}, p_{1})$	$2f(p_3, p_1)$
$C_{p_3p_2} \rtimes_j C_{p_1}$	$p_{3}p_{2}$	$p_{3}f(p_{2},p_{1})$	$p_2 f(p_3, p_1)$	_

i,j	$ R(C_{p_3p_2} \rtimes_j C_{p_1}, [C_{p_3p_2} \rtimes_i C_{p_1}]) $
j = i, -i	$2(p_3 + p_2 + (2p_1 - 5)p_2p_3 + 1)$
$j \neq i, -i$	$2(2p_3 + 2p_2 + (2p_1 - 6)p_2p_3)$

32

Square Free Groups of Order $p_1p_2 \cdots p_n$ in General

Theorem 11: [Birkhoff & Hall] If $|G| = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$ then

(a) |Aut(G)| divides $\theta(p_1^{n_1})\cdots\theta(p_r^{n_r})|G|^{r-1}$.

(b) if G is solvable, |Aut(G)| divides $\theta(p_1^{n_1}) \cdots \theta(p_r^{n_r})|G|$.

(c) if G is nilpotent, |Aut(G)| divides $\theta(p_1^{n_1}) \cdots \theta(p_r^{n_r})$.

where $\theta(p^n) = (p^n - 1)((p^n - p) \cdots (p^n - p^{n-1}))$.

So if $|\Gamma| = p_1 p_2 \cdots p_r$ where $p_1 < \cdots < p_r$ then the Sylow p_r -subgroup is unique and $p = p_r \nmid |Aut(Q)|$ where $|Q| = p_1 \cdots p_{r-1} = m$.

Thus this program may be applied to *all* groups of square-free order.

Thank you!