Hopf-Galois Structures on Degree mp Extensions

Timothy Kohl

May 2016

Hopf-Galois Theory

If L / K is Galois with $\Gamma=\operatorname{Gal}(L / K)$ then the elements of Γ are an L-basis for $E n d_{K}(L)$ whence a natural map:

$$
H=K\left[\ulcorner] \xrightarrow{\mu} \operatorname{End}_{K}(L)\right.
$$

which induces

$$
I \otimes \mu: L \# H \stackrel{\cong}{\rightrightarrows} \operatorname{End}_{K}(L)
$$

For the group ring $K[\Gamma]$ the Hopf algebra structure is reflected in how $K[\Gamma]$ acts (via endomorphisms) on L / K and in Hopf Galois theory, the idea is to consider actions by general Hopf algebras acting by endomorphisms on L / K.

Hopf-Galois theory is a generalization of ordinary Galois theory in several ways.

- One can put Hopf Galois structure(s) on field extensions L / K which aren't Galois in the usual way because they are separable but non-normal e.g. $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$
- Moreover, one can take an extension L / K which is Galois with group Γ (hence Hopf-Galois for $H=$ $K[\Gamma])$ and also find other Hopf algebras which act besides $K[\Gamma]$.

Both cases are covered by the Greither-Pareigis enumeration and the formulation for the latter is as follows:

- L / K finite Galois extension with $\Gamma=\operatorname{Gal}(L / K)$.
Γ acting on itself by left translation yields an embedding

$$
\lambda: \Gamma \hookrightarrow B=\operatorname{Perm}(\Gamma)
$$

Definition: $N \leq B$ is regular if N acts transitively and fixed point freely on Γ.

Theorem 1: [Greither-Pariegis - 1987]
The following are equivalent:

- There is a K-Hopf algebra H such that L / K is H Galois
- There is a regular subgroup $N \leq B$ s.t. $\lambda(\Gamma) \leq$ $\operatorname{Norm}_{B}(N)$ where N yields $H=(L[N]) \Gamma$.

Definitions/Notation:

$$
\begin{aligned}
& B=\operatorname{Perm}(\Gamma) \cong S_{|\Gamma|} \\
& R\left(\left)=\left\{N \leq B \mid N \text { regular, } \lambda\left(\ulcorner) \leq \operatorname{Norm}_{B}(N)\right\}\right.\right.\right. \\
& R(\ulcorner,[M])=\{N \in R(\ulcorner) \mid N \cong M\}
\end{aligned}
$$

The goal then is to enumerate $R(\Gamma)$ for a given Γ and this entails the enumeration of $R(\ulcorner,[M])$ for each isomorphism class M of groups of order $|\Gamma|$.

The problem in general is that one is searching for

$$
N \leq B
$$

where B is very large!

We shall show in the case we study, that all N in question are subgroups of a much smaller group.

Groups of Order mp

Consider those primes ' p ' and integers ' m ' such that

- $\operatorname{gcd}(p, m)=1$
- any group 「 of order $m p$ has a unique (therefore characterstic) Sylow p-subgroup
- for any group Q of order m, one has $p \nmid|\operatorname{Aut}(Q)|$

One obvious class of (p, m) for which the above holds are where $p>m$, but others may be found.

For example, if $(p, m)=(5,8)$ then Sylow theory easily shows that any group of order 40 will have a unique Sylow 5-subgroup.

Moreover for each group of order 8,

$$
\left\{C_{8}, C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}, D_{4}, Q_{2}\right\}
$$

the respective automorphism groups have orders $\{4,8,168,8,24\}$, none of which are divisible by 5 .

For any such group Γ of order $m p$ we have the following.

By Schur-Zassenhaus

$$
\Gamma=P Q \cong P \times Q \text { or } P \rtimes_{\tau} Q
$$

for P the unique Sylow p-subgroup and Q a subgroup of order m.

And since $p \nmid|A u t(Q)|$ then either $p \nmid|A u t(\Gamma)|$ or the Sylow p-subgroup of $A u t(\Gamma)$ is generated by inner automorphisms arising from P.

As such the Sylow p-subgroup of $\operatorname{Hol}(\Gamma)=\Gamma \rtimes A u t(\Gamma)$ is isomorphic to either C_{p} or $C_{p} \times C_{p}$.

For $\lambda(\Gamma) \leq B$ we have $\lambda(\Gamma)=\mathcal{P} \mathcal{Q}$ where (by virtue of regularity) $\mathcal{P}=\left\langle\pi_{1} \pi_{2} \cdots \pi_{m}\right\rangle$ with

- π_{1}, \ldots, π_{m} disjoint p cycles
- \mathcal{Q} is a regular permutation group on $\left\{\Pi_{1}, \ldots, \Pi_{m}\right\}$ where $\Pi_{i}=\operatorname{Support}\left(\pi_{i}\right)$.
- In fact, the Π_{i} are blocks with respect to the action of \mathcal{Q}.

What we wish to prove is that for these p and m that if $N \in R(\Gamma)$ then $N \leq \operatorname{Norm}_{B}(\mathcal{P})$.

This ultimately is due to the relationship between \mathcal{P} and the Sylow p-subgroup of such a given N.

As N in $R(\Gamma)$ is also of order $m p$ then $N=P(N) Q(N)$ where $P(N)=\langle\theta\rangle$ has order p where $\theta=\theta_{1} \cdots \theta_{m}$, also a product of m disjoint p-cycles.

Proposition 2: If $N \in R(\Gamma)$ with Sylow p-subgroup $P(N)$ then $P(N)$ is a semi-regular subgroup of $\mathcal{V}=$ $\left\langle\pi_{1}, \ldots, \pi_{m}\right\rangle$.

Why?
Since $P(N)=\langle\theta\rangle$ is characteristic, it is normalized by $\lambda(\Gamma)$ and thus centralized by \mathcal{P}, and conversely that $P(N)$ centralizes \mathcal{P}.

If $p>m$ then $\theta \pi_{i} \theta^{-1}=\pi_{i}$ implies (after re-ordering if necessary) that $\theta_{i} \in\left\langle\pi_{i}\right\rangle$, so that $P(N) \leq \mathcal{V}$.

Recall that since \mathcal{P} is semi-regular, its centralizer in B is isomorphic to $C_{p}\left\{S_{m}\right.$, more specifically $\mathcal{V} \rtimes \mathcal{S}$ where \mathcal{S} is the set of permutations of the 'blocks' consisting of the supports of the π_{i}.

As it turns out, this is not automatically true that $P(N) \leq \mathcal{V}$ if it's merely assumed that $\operatorname{gcd}(p, m)=1$.

For example, if $p=5$ and $m=8$ then in S_{40} let
$\pi_{i}=(1+(i-1) 5,2+(i-1) 5,3+(i-1) 5,4+(i-1) 5,5+(i-1) 5)$
for $i=1, \ldots, 8$ and let $\theta_{j}=(j, j+5, j+10, j+15, j+20)$
for $j=1, \ldots, 5$ and $\theta_{6}=\pi_{6}, \theta_{7}=\pi_{7}, \theta_{8}=\pi_{8}$.

One may verify that $\pi=\pi_{1} \cdots \pi_{8}$ is centralized by $\theta=$ $\theta_{1} \cdots \theta_{8}$ but for $j=1, \ldots, 5$ that θ_{j} is not a power of any π_{i}.

This example shows that the $P(N) \leq N$ being normalized, and thus centralized, by \mathcal{P} is insufficient to guarantee that $P(N) \leq\left\langle\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right\rangle$.

However since 「 normalizes N, then in fact we do have $P(N) \leq \mathcal{V}$. (even if $p<m$)

The reason is that with $\lambda(\Gamma)=\mathcal{P Q}$ that \mathcal{Q} must also normalizes $P(N)$ and this is what forces $P(N) \leq \mathcal{V}$.

As $\lambda(\Gamma)=\mathcal{P Q}$ normalizes \mathcal{P} then for any $N \in R(\Gamma)$ we have $P(N)$ normalizes \mathcal{P} so we need to look closely at the structure of $\operatorname{Norm}_{B}(\mathcal{P})$.

Proposition 3:

$$
\operatorname{Norm}_{B}(\mathcal{P}) \cong C_{p}^{m} \rtimes\left(U_{p} \times S_{m}\right)
$$

- typical element (\hat{a}, u, α) where $\widehat{a}=\left[a_{1}, \ldots, a_{m}\right] \in \mathbb{F}_{p}^{m}$
- $\left[a_{1}, \ldots, a_{m}\right]$ corresponds to $\pi_{1}^{a_{1}} \cdots \pi_{m}^{a_{m}} \in \mathcal{V}$
- $u \in U_{p}=\mathbb{F}_{p}^{*}$ acts by scalar multiplication
- α in S_{m} permutes the coordinates
- $(\widehat{b}, v, \beta)(\widehat{a}, u, \alpha)=(\widehat{b}+v \beta(\widehat{a}), v u, \beta \alpha)$
- $\operatorname{Cent}_{B}(\mathcal{P})$ consists of those (\hat{a}, u, α) where $u=1$

Since $P(N) \leq \mathcal{V}=\left\langle\pi_{1}, \ldots, \pi_{m}\right\rangle$ then its generator is of the form $\pi_{1}^{a_{1}} \cdots \pi_{m}^{a_{m}}$ for some set $\left\{a_{i}\right\}$ where all $a_{i} \neq 0$.

Theorem 4: Any semi-regular subgroup of B of order p that is normalized by \mathcal{Q}, hence $\lambda(\Gamma)$, is generated by

$$
\hat{p}_{\chi}=\sum_{\gamma \in \mathcal{Q}} \chi(\gamma) \hat{v}_{\gamma(1)}
$$

- $\chi: \mathcal{Q} \rightarrow U_{p}=\mathbb{F}_{p}^{*}$ is a linear character of \mathcal{Q}
- $\widehat{v}_{i}=[0, \ldots, 1, \ldots, 0] \leftrightarrow \pi_{i}$.
- \mathcal{Q} acts regularly on $\{1, \ldots, m\}$.

For example, if $m=4$ and $\mathcal{Q} \cong C_{2} \times C_{2}=\langle x, y\rangle$, we have

	1	x	y	$x y$
χ_{1}	1	1	1	1
χ_{2}	1	1	-1	-1
χ_{3}	1	-1	1	-1
χ_{4}	1	-1	-1	1

whence subgroups

$$
\begin{aligned}
\mathcal{P}=P_{1} & =\langle[1,1,1,1]\rangle=\left\langle\pi_{1} \pi_{2} \pi_{3} \pi_{4}\right\rangle \\
P_{2} & =\langle[1,1,-1,-1]\rangle=\left\langle\pi_{1} \pi_{2} \pi_{3}^{-1} \pi_{4}^{-1}\right\rangle \\
P_{3} & =\langle[1,-1,1,-1]\rangle=\left\langle\pi_{1} \pi_{2}^{-1} \pi_{3} \pi_{4}^{-1}\right\rangle \\
P_{4} & =\langle[1,-1,-1,1]\rangle=\left\langle\pi_{1} \pi_{2}^{-1} \pi_{3}^{-1} \pi_{4}\right\rangle
\end{aligned}
$$

Now, to further organize the arrangement of N in a given $R(\Gamma,[M])$ we consider the role of $N^{o p p}=\operatorname{Cent}_{B}(N)$.

For example, $\lambda(\Gamma)^{o p p}=\rho(\Gamma)$ where $\rho: \Gamma \rightarrow \operatorname{Perm}(\Gamma)$ is the right regular representation.

We have the following:

- N regular if and only if $N^{o p p}$ regular
- N regular $\rightarrow\left(N^{o p p}\right)^{o p p}=N$
- $\operatorname{Norm}_{B}(N)=\operatorname{Norm}_{B}\left(N^{o p p}\right)$
- $N \in R(\Gamma,[M])$ if and only if $N^{o p p} \in R(\Gamma,[M])$

Theorem 5: If $\mathcal{P}=P_{1}, P_{2}, \ldots, P_{k}$ are the possible $P(N)$ then
(a) if N is a direct product (with $P(N)$ as a factor) then

$$
N \in R\left(\ulcorner,[M]) \text { implies } P(N)=\mathcal{P}=P\left(N^{o p p}\right)\right.
$$

(b) if N is a semi-direct product then $P(N) \neq P\left(N^{o p p}\right)$ and
$\mid\left\{N \in R\left(\ulcorner,[M]) \mid P(N)=P_{1}\right\}\left|=\sum_{i=2}^{k}\right|\left\{N \in R\left(\ulcorner,[M]) \mid P(N)=P_{i}\right\} \mid\right.\right.$
N.B. For a given isomorphism class [M] it's possible that $\left\{N \in R(\Gamma,[M]) \mid P(N)=P_{i}\right\}$ may be empty for some $i>1$, or that $R(\Gamma,[M])$ might be empty altogether.

Orthogonality of characters, namely those giving rise to $P(N)$ for $N \in R(\Gamma)$, together with the assumption that $p \nmid|\operatorname{Aut}(Q)|$ ultimately yields the main theorem which allows us to 'contain' all of $R(\Gamma)$ in a much smaller subgroup of B.

Theorem 6: If $N \in R(\Gamma)$ then $N \leq \operatorname{Norm}_{B}(\mathcal{P})$.

To simplify the computations, one may observe that any two regular subgroups of S_{n} that are isomorphic as abstract groups are in fact conjugate to each other.

The result of this is that instead of working in $B=$ $\operatorname{Perm}(\Gamma)$ and dealing with left regular representations, it is simpler to instead pick Γ to be a regular subgroup of $B=S_{m p}$ and compute N with respect to this choice of Γ.

- Define $\mathcal{P}=\left\langle\pi_{1} \cdots \pi_{m}\right\rangle$ where $\pi_{i}=(1+p(i-1), \ldots, p i)$
- For each (isomorphism class of) regular permutation group \mathcal{Q} of order m, embed \mathcal{Q} in $\operatorname{Norm}_{B}(\mathcal{P})$
- For each character χ of \mathcal{Q} compute \hat{p}_{χ} and correspondingly $\Gamma=\left(\left\langle\hat{p}_{\chi}\right\rangle \mathcal{Q}\right)^{\text {opp }}$ which will be regular and contain \mathcal{P}.
- Let $\Gamma_{1}, \ldots, \Gamma_{d}$ be the distinct isomorphism classes resulting from this construction.
- Determine $N \in R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)$ for each i, j where now all Γ_{i} are regular subgroups of B containing the same \mathcal{P}

Examples: Groups of Order $4 p$

- $C_{4 p}$
- $C_{p} \times V$
- $E_{p}=C_{p} \rtimes C_{4}$ if $p \equiv 1(\bmod 4)$
- $D_{2 p}$
- Q_{p}

Theorem 7: Let $R(\Gamma,[M])$ be the set of regular subgroups N isomorphic to M in $\operatorname{Perm}\left(\Gamma_{i}\right)$ that are normalized by $\lambda(\Gamma)$. Then the cardinality of $R(\Gamma,[M])$ is given by the following table:

$\Gamma \backslash M$	$C_{4 p}$	$C_{p} \times V$	E_{p}	$D_{2 p}$	Q_{p}
$C_{4 p}$	1	1	4	2	2
$C_{p} \times V$	3	1	0	6	6
E_{p}	p	p	$2 p+2$	$2 p$	$2 p$
$D_{2 p}$	$3 p$	p	0	$4 p+2$	$4 p+2$
Q_{p}	p	p	$4 p$	2	2

Byott determined $\left|R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)\right|$ for groups of order $p q$ for p and q prime, where $p \equiv 1(\bmod q)$, which can also be done via our method, the results being

$\Gamma \backslash M$	$C_{p q}$	$C_{p} \rtimes C_{q}$
$C_{p q}$	1	$2(q-2)$
$C_{p} \rtimes C_{q}$	p	$2(p(q-2)+1)$

For $p=2 q+1$ (where q is prime, making p a 'safe prime') and $m=p-1=2 q$

- $C_{m p}$
- $C_{p} \times D_{q}$
- $\left(C_{p} \rtimes C_{q}\right) \times C_{2}=F \times C_{2}$
- $D_{p} \times C_{q}$
- $D_{p q}$
- $C_{p} \rtimes C_{2 q} \cong \operatorname{Hol}\left(C_{p}\right)$

Theorem 8: Let $R(\Gamma,[M])$ be the set of regular subgroups N isomorphic to M in $\operatorname{Perm}\left(\Gamma_{i}\right)$ that are normalized by $\lambda(\Gamma)$. Then the cardinality of $R(\Gamma,[M])$ is given by the following table:

$\Gamma \backslash M$	$C_{m p}$	$C_{p} \times D_{q}$	$F \times C_{2}$	$C_{q} \times D_{p}$	$D_{p q}$	$\operatorname{Hol}\left(C_{p}\right)$
$C_{m p}$	1	2	$2(q-1)$	2	4	$2(q-1)$
$C_{p} \times D_{q}$	q	2	0	$2 q$	4	0
$F \times C_{2}$	p	$2 p$	$2(p(q-2)+1)$	$2 p$	$4 p$	$2 p(q-1)$
$C_{q} \times D_{p}$	p	$2 p$	$2 p(q-1)$	2	4	$2 p(q-1)$
$D_{p q}$	$q p$	$2 p$	0	$2 q$	4	0
$H o l\left(C_{p}\right)$	p	$2 p$	$2 p(q-1)$	$2 p$	$4 p$	$2(p(q-2)+1)(*)$

(*) This case was enumerated by Childs using different techniques.

Groups of Square-Free Order

If we branch out from the $p>m$ case, we can consider groups of order $p_{1} p_{2} \cdots p_{n}$ for primes $p_{1}<\ldots p_{n}$.

There is a classic formula due to Hölder (and utilized by Alonso) for the enumeration of groups of square-free order.

All such groups are iterated (semi)-direct products of cyclic groups, the number of which are dependent on whether $p_{l} \equiv 1\left(\bmod p_{k}\right)$ for $l>k$, where the maximum number of groups occurs if each p_{l} is congruent to 1 \bmod each p_{k} for $l>k$.

Consider groups of order $p_{1} p_{2} p_{3}$ for $p_{1}<p_{2}<p_{3}$.

If $|\Gamma|=p_{1} p_{2} p_{3}$ then the Sylow p_{3}-subgroup of Γ is unique, and if $p=p_{3}$ and $m=p_{1} p_{2}$ then groups of order m have automorphism groups of order relatively prime to p_{3}.

If $p_{3} \equiv 1\left(\bmod p_{2}\right)$ and $p_{2} \equiv 1\left(\bmod p_{1}\right)$ and $p_{2} \equiv 1\left(\bmod p_{1}\right)$ then $p_{3}>p_{1} p_{2}$ (i.e. $p>m$) similar to the cases for the safe primes seen earlier.

However, if $p_{3} \equiv 1\left(\bmod p_{1}\right)$ and $p_{2} \equiv 1\left(\bmod p_{1}\right)$ and $p_{3} \not \equiv 1\left(\bmod p_{2}\right)$ then $p=p_{3}<m=p_{1} p_{2}$.

Proposition 9:[Alonso] If p_{1}, p_{2} and p_{3} are distinct odd primes where $p_{1}<p_{2}<p_{3}$ with $p_{3} \equiv 1\left(\bmod p_{1}\right)$, $p_{2} \equiv 1\left(\bmod p_{1}\right)$, but $p_{3} \not \equiv 1\left(\bmod p_{2}\right)$ then there are $p_{1}+2$ groups of order $p_{1} p_{2} p_{3}$:

$$
\begin{aligned}
C_{p_{3} p_{2} p_{1}}= & \left\langle x, y, z \mid x^{p_{3}}, y^{p_{2}}, z^{p_{1}},[y, x],[z, x],[z, y]\right\rangle \\
C_{p_{2}} \times\left(C_{p_{3}} \rtimes C_{p_{1}}\right)= & \left\langle x, y, z \mid x^{p_{3}}, y^{p_{2}}, z^{p_{1}},[y, x],[z, y], z x z^{-1} x^{-v_{3}}\right\rangle \\
C_{p_{3}} \times\left(C_{p_{2}} \rtimes C_{p_{1}}\right)= & \langle x, y, z| x^{p_{3}}, y^{p_{2}}, z^{p_{1}},[y, x],[z, x], z y z^{-1} y^{\left.-v_{2}\right\rangle} \\
C_{p_{3} p_{2}} \rtimes_{i} C_{p_{1}}= & \left\langle x, y, z \mid x^{p_{3}}, y^{p_{2}}, z^{p_{1}},[y, x], z x z^{-1} x^{-v_{3}}, z y z^{-1} y^{-v_{2}^{i}}\right\rangle \\
& i=1, \ldots, p_{1}-1
\end{aligned}
$$

where v_{3} is the order p_{1} element in $U_{p_{3}}$ and v_{2} is the order p_{1} element of $U_{p_{2}}$.

Theorem 10: If we define

$$
\begin{aligned}
& f(a, b)=2(a(b-2)+1) \\
& g(a, b)=2 a(b-1)
\end{aligned}
$$

then

$\Gamma \backslash M$	$C_{p_{3} p_{2} p_{1}}$	$C_{p_{3}} \times\left(C_{p_{2}} \rtimes C_{p_{1}}\right)$	$C_{p_{2}} \times\left(C_{p_{3}} \rtimes C_{p_{1}}\right)$	$C_{p_{3} p_{2} \rtimes_{i} C_{p_{1}}}$ $C_{p_{3} p_{2} p_{1}}$ 1^{2}
$g\left(1, p_{1}\right)$	$g\left(1, p_{1}\right)$	$2 g\left(1, p_{1}\right)$		
$C_{p_{3}} \times\left(C_{p_{2}} \rtimes C_{p_{1}}\right)$	p_{2}	$f\left(p_{2}, p_{1}\right)$	$g\left(p_{2}, p_{1}\right)$	$2 f\left(p_{2}, p_{1}\right)$
$C_{p_{2}} \times\left(C_{p_{3}} \rtimes C_{p_{1}}\right)$	p_{3}	$g\left(p_{3}, p_{1}\right)$	$f\left(p_{3}, p_{1}\right)$	$2 f\left(p_{3}, p_{1}\right)$
$C_{p_{3} p_{2} \rtimes_{j} C_{p_{1}}}$	$p_{3} p_{2}$	$p_{3} f\left(p_{2}, p_{1}\right)$	$p_{2} f\left(p_{3}, p_{1}\right)$	-

i, j	$\left\lvert\, R\left(C_{\left.p_{3} p_{2} \rtimes_{j} C_{p_{1}},\left[C_{p_{3} p_{2}} \rtimes_{i} C_{p_{1}}\right]\right) \mid} \begin{array}{c\|}j=i,-i\end{array} 2\left(p_{3}+p_{2}+\left(2 p_{1}-5\right) p_{2} p_{3}+1\right)\right.\right.$
$j \neq i,-i$	$2\left(2 p_{3}+2 p_{2}+\left(2 p_{1}-6\right) p_{2} p_{3}\right)$

Square Free Groups of Order $p_{1} p_{2} \cdots p_{n}$ in General

Theorem 11: [Birkhoff \& Hall] If $|G|=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{r}^{n_{r}}$ then
(a) $|A u t(G)|$ divides $\theta\left(p_{1}^{n_{1}}\right) \cdots \theta\left(p_{r}^{n_{r}}\right)|G|^{r-1}$.
(b) if G is solvable, $|A u t(G)|$ divides $\theta\left(p_{1}^{n_{1}}\right) \cdots \theta\left(p_{r}^{n_{r}}\right)|G|$.
(c) if G is nilpotent, $|A u t(G)|$ divides $\theta\left(p_{1}^{n_{1}}\right) \cdots \theta\left(p_{r}^{n_{r}}\right)$.
where $\theta\left(p^{n}\right)=\left(p^{n}-1\right)\left(\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)\right.$.

So if $|\Gamma|=p_{1} p_{2} \cdots p_{r}$ where $p_{1}<\cdots<p_{r}$ then the Sylow p_{r}-subgroup is unique and $p=p_{r} \nmid|A u t(Q)|$ where $|Q|=p_{1} \cdots p_{r-1}=m$.

Thus this program may be applied to all groups of square-free order.

Thank you!

